SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper tube and fittings.
 - 2. Steel pipe and fittings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Pipe and tube.
 - 2. Fittings.
 - 3. Joining materials.
 - 4. Transition fittings.

1.4 WARRANTY

- A. PP-R Manufacturer's Warranty: Manufacturer agrees to repair or replace PP-R pipe and fittings that fail in materials or workmanship within 10 years from date of Substantial Completion.
 - 1. Warranty is to cover labor and material costs of repairing and/or replacing defective materials and repairing any incidental damage caused by failure of the piping system due to defects in materials or manufacturing.
 - 2. Warranty is to be in effect only upon submission by the Contractor to the manufacturer of valid pressure/leak documentation indicating that the system was tested and passed the manufacturer's pressure/leak test.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Hot-Water Heating Piping: 200psig at 200 deg F.
 - 2. Chilled-Water Piping: 200 at 73 deg F.
 - 3. Condenser-Water Piping: 200 psig at 73 deg F.
 - 4. Makeup-Water Piping: 150 psig at 150 deg F.
 - 5. Condensate-Drain Piping: 180 deg F.
 - 6. Blowdown-Drain Piping: 200 deg F.
 - 7. Air-Vent Piping: 200 deg F.
 - 8. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A53/A53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 as indicated in "Piping Applications" Article.
- C. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Class125; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Hot-water heating piping, aboveground, NPS 2-1/2 and smaller, shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 - 2. Schedule 40, Grade B steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- B. Hot-water heating piping, aboveground, NPS 3, shall be the following:
 - 1. Schedule 40 steel pipe, Class 250 wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

- C. Chilled-water piping, aboveground, NPS 2-1/2 and smaller, shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 - 2. Schedule 40 steel pipe; Class 250, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- D. Chilled-water piping, aboveground, NPS 3, shall be the following:
 - 1. Schedule 40 steel pipe, Class 250 wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- E. Condenser-water piping, aboveground, NPS 2-1/2 and smaller, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 - 2. Schedule 40 steel pipe; Class 250, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- F. Condenser-water piping, aboveground, NPS 3 and larger, shall be any of the following:
 - 1. Schedule 40 steel pipe, Class 250 wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- G. Makeup-water piping installed aboveground shall be either of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
- H. Condensate-Drain Piping, Copper: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- I. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.
- J. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.
 - 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.
- K. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.

3.2 INSTALLATION OF PIPING

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install air vents at all high points of system.
- N. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- O. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- P. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- Q. Install valves according to the following:

- 1. Section 230523.11 "Globe Valves for HVAC Piping."
- 2. Section 230523.12 "Ball Valves for HVAC Piping."
- 3. Section 230523.13 "Butterfly Valves for HVAC Piping."
- 4. Section 230523.14 "Check Valves for HVAC Piping."
- 5. Section 230523.15 "Gate Valves for HVAC Piping."
- R. Install unions in piping, NPS 2-1/2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- S. Install flanges in piping, NPS 3 and larger, at final connections of equipment and elsewhere as indicated.
- T. Install shutoff valve immediately upstream of each dielectric fitting.
- U. Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.
- V. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for identifying piping.
- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Apply ASTM B813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B32.
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.
- E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.4 INSTALLATION OF HANGERS AND SUPPORTS

- A. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for hangers, supports, and anchor devices.
- B. Install hangers for steel piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- C. Install hangers for plastic piping, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- D. Install hangers for fiberglass piping, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- E. Support horizontal piping within 12 inches of each fitting and coupling.
- F. Support vertical runs of steel piping to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.5 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gauges and thermometers at coil inlet and outlet connections. Comply with requirements in Section 230519 "Meters and Gages for HVAC Piping."

3.6 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 - 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
 - 7. Verify lubrication of motors and bearings.

DISTRICT OF COLUMBIA COURTS MECHANICAL ROOM 1000 CHILLED WATER PLANT UPGRADES

END OF SECTION

HYDRONIC PIPING

232113 - 8